VALIS, an immune-inspired classification algorithm

Natural immune system

- > Antigen presentation
- > T-cell activation
- B-cell activation
- > Antigen matching
- Antibody production
- Pathogen destruction

Immune-inspired algorithms

Negative selection

Clonal selection

Immune networks

Dendritic cells, danger theory,

• • • • • • •

Immune system — classification analogy

Antigen ←--→ Data sample AG

Antibody ← − → Data structure AB

Immune response ←--→ Classification result

Binding:

 $D(AB_i, AG) < R_i,$

D — distance function,

R_i — binding threshold

Classification by voting

VALIS — Vote Allocating Immune System

Bound antibodies vote for their class. Majority of votes determines the classification result.

Training algorithm

1. Initialization

Create *PopSize* random antibodies

2. Dataset presentation

Present dataset to the system, for each antibody calculate:

- Number of bound and correctly classified antigens
- Probability of correct classification *PCorrect*
- *Overlapping coefficient KShare
- Fitness f = PCorrect / KShare

3. Class assignment

Set antibody classes according to the majority of bound antigens

4. Reproduction

Create $NChildren = LearnRate \times PopSize$ children by crossover and mutation

5. Replacement

Replace NChildren lowest fit antibodies with children

6. End of one generation

Go to step 2 until a termination criterion is satisfied

Test problem

Training dynamics

Character recognition

Antigens

Numerals from 0 to 9, randomly scaled and rotated

Antibodies

Binary arrays

Classification accuracy

99%

Generalization ability: recognition invariance to scale and rotation

Text classification

Antigens

Antibodies
Classification accuracy

Pieces of source code in one of 6 programming languages

Variable length strings

96%

Typical antibody elements:

Assembler @, mov, lf

Basic \$

C fp, $\{\#13, \}, <, \n$

Fortran #10c

Lisp ;;,),))#13

Pascal en, in#13, :=

Conclusion

Features of the proposed system:

- > Effective training
- High generalization ability
- Decentralized memory
- Collective classification
- Robust to antibody deletion

Future work:

- > Testing on various problems
- Variable learning rate
- Soft binding
- Antibody population postprocessing

Project's web page is available at: inversed.ru/AIS.htm